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Dielectrophoresis of a deformable fluid particle in a nonuniform electric field
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In nonuniform electric fields, the dielectrophoretic behavior and the interface shape of uncharged fluid
particles freely suspended in an immiscible fluid may be significantly influenced by the induced electrohydro-
dynamic flow. This work presents a theoretical investigation of the primary effects of electrohydrodynamic
flow associated with the dielectrophoresis of a deformable fluid particle with a leaky dielectric model. The
electrohydrodynamic flow is shown to either enhance or hinder the dielectrophoretic motion of fluid particles.
A variety of shapes of deformable fluid particles are predici8d063-651X96)03410-1

PACS numbefs): 47.55.Dz, 47.65ta, 77.84.Nh, 82.45.z

In a nonuniform electric field, an uncharged particle mayderstand the basic features of the electrohydrodynamic flow
be subjected to a dielectrophoretic force. The dielectrophoren the dielectrophoresis of deformable fluid particles, the
sis of particles is important in a variety of applications in- theoretical model considered here is kept simple by neglect-
cluding biophysics, bioengineering, multiphase separationng all nonlinear effects. As demonstrated by Feng and Scott
among otherg§1]. When the particles of concern are fluid [6], the inclusion of nonlinearities in the numerical compu-
drops or bubbles, the fluid interface between the particle anftions may provide more accurate results than a linearized
surrounding medium can be mobile as well as deformable. IRSymptotic analysis. Appropriate procedures for computing
finite electrical conductivity of the dielectric fluids comes the solutions of the nonlinear equations may also be used to
into play, local charge accumulation at the mobile fluid in- predict the critical electric field strength when the fluid par-
terface can induce a tangential electric stress that drags fluidi§le becomes unstable, when the mathematical singular
into motion[2]. The leaky dielectric theory put forward by points are evaluated in parameter space. Nevertheless, ana-
Taylor [3] has been successful in describing the electrohylytical solutions of the linearized problem can offer impor-
drodynamic flow driven by the tangential electric stresstant physical insights into the primary electrohydrodynamic
around an uncharged fluid drop in a uniform electric fieldeffects and provide invaluable guidance to more comprehen-
(see alsd4—6]). Theoretical analyses of the dielectrophore-Sive numerical computationf. [6]).
sis of uncharged drops and bubbles in nonuniform fields, The problem of concern here consists of a fluid particle of
however, have not considered the effects of the electrohydraolume (4/3)ra®, density p;, viscosity u;, conductivity
dynamic flow and particle shape deformati¢ag To eluci- i, and dielectric constank; immersed in an unbounded
date the primary effects of electrohydrodynamic flow in theimmiscible fluid of densityp,, viscosity u,, conductivity
dielectrophoresis of deformable fluid particles, such as dropgo, and dielectric constank,. The deformable interface
and bubbles, this work presents a theoretical analysis of theeparating the particle from its surrounding fluid has constant
poorly understood phenomena with a leaky dielectric modelinterfacial tensiony. In what follows, the subscripts and

The key ingredients in the leaky dielectric model, as rec-0 denote the variables associated with the fluids inside and
ognized by Taylof3], are the finite electrical conductivity outside the particle, respectively; the variables without sub-
and viscosity of the fluids. Accounting for the fluid conduc- scriptsi ando are applicable to either fluid. To illustrate the
tivity in the theory need not be sophisticated; constant Ohmidnost significant effects of local charge accumulation at the
conductivity in each fluid phase can be sufficient to induceparticle interface, the present analysis only considers a dc
tangential electric stress at the particle interface. The electrelectric field and associated axisymmetric steady states. In
hydrodynamic flow, due to the tangential electric stress, is &pherical coordinates ( 6) with the origin fixed at the par-
consequence of the fluid viscosities that transfer momenturticle’s center of mass, the externally applied electric field can
from the interface, where the driving force resides, to bulkbe described in terms of the electric potentia
fluids. Many functional forms may be used to describe fluid(E=—VV) which is assumed to have the form
viscosities[7]; among all the possibilities, Newtonian fluids
of constant viscosities may be considered as a simple yet _ 2
adequate first approximation in the leaky dielectric theory. V=Bl rPu(H +ArTPAD)], @
Even for Newtonian fluids, nonlinearities may appear in gen-
eral governing equations because of the fluid inertia and theshere{=cos§ andP,({) denotes the Legendre polynomials.
capillarity of deformable fluid interfaces. The nonlinear be-The factorA is a measure of the relative magnitude of the
havior of significantly deformed leaky dielectric drops in afield nonuniformity. The applied field given byl) could be
uniform electric field was investigated by Feng and Spglt the simplest possible nonuniform electric field for dielectro-
with finite element computations. Nonlinearities may alsophoresig8].
arise from the charge convection by fluid flow at the inter- For homogeneous fluids with constant physical properties,
face, which have not been rigorously investigated in existinghe electric potential distributions inside and outside a
theoretical work(see the discussions in Refd—6]). To un-  spherical particle are found to be
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3 5 whereG,(¢) are the Gegenbauer functions of the first kind
>7R PO+ AT ZgT Pz(g)} (2 [9] and Bo,=117,/15, Bs=73/5+ 67235, Ba=24n.7,!
35, Bs=475/7. The solutiong6) and(7) satisfy the traction
and boundary condition for the tangential stresses at a spherical
fluid interface and the natural boundary conditions that re-
- quire the boundedness of the flow field at infinity and coor-
( r +m r_Z) P1(£) dinate origin. With the relationship between the flow velocity
u and the stream function given by

Vi(r,0)=—E,

3
Vo(r,0)=—Eo

— a5
S S r—3> Pz(g)}. ® 1o
Ur=25ing 90

+A

Equationq2) and(3) satisfy the Laplace equation and all the
boundary conditions, such as that given @y in the far and
field, as well as the continuity of the tangential component of
the electric field and that of the normal component of the
electrical current densitydE) at the fluid interfacer =a.

Here R=0; /0, is the conductivity ratio. Consequently, the

steady surface charge density distribution on the fluid interthe corresponding tangential flow velocity along the fluid
face is given by interface, driven by the tangential electric stress, can be de-

rived as

1 9y
rsing or’

Ug=

0s(0) = €o(koR— ki) Eql 71P1(0)+2m,P2(0)]  (4) 5
(koR— ki) egEpa

as consistent with the jump in the normal component of the Ug= 35 gt 1)
electric displacement vectoreqkE at r=a, with
7,=3/(2+R), n,=5Aa/(3+ 2R), ande, denoting the per- , 79
mittivity of free space. Clearly, the overall particle is electri- + 7,sing 0039< 35c080—9+—
cally neutral even though the local charge density is nonzero 72
around the interface. These nonzero local surface charg_qthe first term in(8) represents the asymmetric flow with
can be acted upon by the tangential component of electricaspect to the particle’s equatorial plane, which is associated
field at the fluid mterfape to generat_e a tangential electriGyith a net force. The fact that the asymmetric flow is pro-
stress(cf. Ref.[2,3]), which can be written as portional toz; 7, shows that both th®; andP, components
P in the applied electric field are necessary for generating a net
1_2 force. In contrast, the second term(B) consists of compo-

a9 nents associated with eithefZ or 73, indicating that the

71772

3 Sing(90 cogH—11)

. (8

Py
AsE = €0l KoR - Ki>Eé[ 7iP1— o+ M| P

symmetric flow may appear in any configuration of the ap-
P4 , IP; , O ’
+2P,——| +275P,—|. (50  plied electric field. Taylor’s results for the electrohydrody-
a9 a9 namic flow about a drop in a uniform fie|@] are recovered

Because the fluid interface cannot support tangential stresseaét,Azo n the more general results pr_ese_nted here.
To quantitatively calculate the contributions of electrohy-

the tangential electric stress must be offset by the VISCOLIarodynamic flow to the dielectrophoretic force as well as the

stresses arising from the induced electrohydrodynamic ﬂOWquid interface deformation, the normal stress balance at the
Without omitting the salient features in dielectrophoresis '

SO : - ~fluid interface must be evaluated. For convenience, the prob-
the effects of the fluid inertia and particle shape deformatloqem is considered in a reference frame with the coordi%ate
are neglected for the moment. Thus the primary electrohy-". .~ o .
drodynamic flow field can be determined by solving a linear®"'9in fixed at the particle’s center of mass. Thus the motion

) . ; of the particle is equivalently represented by a uniform flow
fourth-order equation for the stream functiy velocity at infinity [10]. The steady motion of the particle

2 sind ol 1 o\l2 can be readily accounted for by adding a term for uniform
S+ — _0(_6 —0” =0 flow past a spherical fluid particle at zero Reynolds number
o r= d0\sind o [9]in (6) and(7). Moreover, the buoyant force due to gravity
that vields is assumed to be aligned with the applied electric field so that
y axisymmetry is preserved. Thus the equation for the normal
(KR~ Ki)foES i (r+2— a2y stress balance at the fluid interface takes the form
lﬁi(r,@)—Wl:Z Br——r 1 Gi(d), _ _ y
©) n[(T+T5,— (T+T9)1= V-, )
and where n is the outward unit normal vector at the fluid
. 5 ) interface, T=—pl+u[Vu+(Vu)'] and TE=eux(E E
Po(r,0)= —(KOR_ i) €oEo ( _a a'G(2) —(1/2E-E 1) [2] with superscripfl standing for the trans-
oM Mot M = P31 1 Ren pose and the identity tensor. The term on the right side of

(7) (9) is the capillary force due to fluid interface curvatures.
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Each term in(9) can be written as an expansion i} function written asF(H)zE,“:ZmP,(g), the interface curva-
wherel ranges from 0 to 4, with the terms on the left sideture termV -n in (9) takes the approximate forifsee, e.g.,

approximated by the results for spherical particles and th¢10]) 2+3}_,(12+1—2)eP, provided that|a|<1. Thus
capillary force term on the right side retaining the first-order(9) yields

effects of interface deformations. Only the terms associated

with [ =1 in (9) contribute to a net force, which is of primary K GoE(Z)a
concern in dielectrophoresis. By gathering the terms associ- 42~ 4y
ated withP; in (9), the equation describing net force balance

7
3

2
(SR+S-2)+ %(43#—35— 1)

(in the direction of¢ = 0[11]) can be obtained as ) 675 (SR-1)(2M +3)
7t 7 ) s ) (12)
Amrieofgha’ 2(2SR—35+1)+(SR-1) 0
et - — 2
(2+R)(3+2R) M+1 aszkleoi%anlnz[6(SR2+S_2)
4 +2M Y
=3 ma°9(pi—po) + 2mpomidl (10 12(SR-1)(3M +4)
7(M+1) ' (12
whereS=«k,/k;, M=u,/u;, g is the acceleration of grav-
ity, and U denotes the dielectrophoretic velocity. The term KieoEgang
associated withJ represents the viscous drag on a creeping oqIW 6(SR+S-2)
spherical particle with a mobile fluid interface. (f0), the
left side accounts for the forces of electric orgin with the first (SR-1)(4M +5)
term arising from the normal electric stressif: TF) and the M1 (13)

second term from electrohydrodynamic flowmnr(:T),

whereas the right side represents the forces of nonelectrigjith respect to the particle’s equatorial plane, the symmetric
origin, namely, buoyancy and viscous drag. Whén= 0,  shape component is representeddyyand «,, whereas the
(10) describes the force balance in the situation of dielectroasymmetric deformation is represented by. Like the
phoretic levitation of fluid particles against gravity2]. asymmetric component in the tangential velocity at the inter-
The intensity of electrohydrodynamic flow increases a¥ace[see(8)], as is proportional ton; 77,. In the absence of
R—0 and vanishes é8— 1/S because of the disappearance the P, component of the applied field, i.eA— 0, a3 and
of surface charge accumulatipsee(4)]. Actually electrohy- , 4 vanish anda, recovers Taylor's result§3] for drop
drodynamic flow also vanishes &&—. In this case, the shapes in a uniform electric field. In any configuration of the
fluid inside the particle is much more conductive than theapplied electric field, the prolate-oblate type of two-lobed
surrounding fluid and the tangential component of electri(‘shape deformation described lyP,(¢) may always ap-
field becomes zero, leading to zero tangential electric stréSSear. Moreover, both signs and relative magnitudesrof
[see(5)] despite a substantial amount of surface charge eXwith 1=2, 3, 4 can be changed by varying, S, M, and
isting at the fluid interface. A; therefore, a fluid particle may exhibit a great variety of

For systems witlR approaching unity, dielectrophoresis shapes in response to the stress distributions in the dielectro-
becomes impossible for the solid sphefg&s According to phoretic process.

(10), however, the dielectrophoretic force on a fluid particle’  ag g result of(9) for I =0, the uniform excess pressure

differs from that on a solid sphere by a term proportional toj,side a fluid particle of volume (4/3)a® can be determined
M(SR-1)/(M+1). Hence, dielectrophoresis of fluid par- 5¢

ticles with mobile interfaces may still occur &=1 pro-

vided thatk,# k; and u,/u; is not diminishing. Of course, 2y «kieEda(n;

circumstances also exist for the dielectrophoretic force to Apo:;— > 3(5R2—23+ 1)

vanish on a fluid particle but remain effective on a solid

particle. For two-phase fluid systems with closely matched 7;§ SR-1 ’ 61;%
conductivities and surrounding fluids much more viscous +?(2SR2—3S+ 1)+m mt —-
than that inside the particles, significant differences are ex-

pected between the dielectrophoretic motion of fluid and §

solid particles. If u;>pu,, the electrohydrodynamic flow X(2M=7) = 7,(84M—169)| 1. 14

contribution to the dielectrophoretic force becomes the same
as that due to the jump in the tangential electric stress at thEor liquid drops immersed in an immiscible fluidp, may
surface of a solid sphere. Therefore, when the fluid inside thaeot cause any noticeable physical consequences due to the
particle is much more viscous than the outside one, the dimaterial incompressibility. For gas bubbles in liquids, how-
electrophoretic motion of a spherical fluid particle resemblesver, Ap, is intimately related to the bubble volume which
that of a solid sphere, despite the fundamental difference imay be of practical concern in many applications.
physical mechanisms and the appearance of the electrohy- The analysis of this work provides the predictions of the
drodynamic flow. primary effects of electrohydrodynamic flow driven by the
One of the fundamental differences between fluid andangential electric stress in the dielectrophoresis of a fluid
solid particles is the fluid interface deformation. With the particle and the nature of electrified fluid interface deforma-
fluid interface described by=a[1+F(6)] and the shape tions. In general, for systems witlRE-1)(SR-1)<0, a
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fluid particle is subjected to a stronger dielectrophoreticdielectrophoretic force may increase when the fluid particle
force than a solid sphere due to the electrohydrodynamiés elongated in the electric field direction because of a greater
flow. If (R—1)(SR-1)>0, the electrohydrodynamic flow induced dipole moment, or vice versa. Hence, judiciously
tends to hinder the dielectrophoretic motion of a fluid par-arranging the fluid properties so that the fluid particles are
ticle in comparison with a solid sphere subjected to the samelongated or compressed in the direction of the applied elec-
nonuniform electric field. In response to stresses arising frontric field may become an effective means to control the

the electric field and electrohydrodynamic flow, a fluid par-strength of the dielectrophoretic force to achieve desired di-
ticle can be deformed in a variety of shapes depending on thelectrophoretic performance.

values ofR, S, M, andA. A particle of a different shape may

render different polarization features and in turn alter the The author wishes to thank Dr. P.K. Watson and Dr. D.A.

electric and flow fields in different ways. For example, theHays for their valuable discussion and comments.
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