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In nonuniform electric fields, the dielectrophoretic behavior and the interface shape of uncharged fluid
particles freely suspended in an immiscible fluid may be significantly influenced by the induced electrohydro-
dynamic flow. This work presents a theoretical investigation of the primary effects of electrohydrodynamic
flow associated with the dielectrophoresis of a deformable fluid particle with a leaky dielectric model. The
electrohydrodynamic flow is shown to either enhance or hinder the dielectrophoretic motion of fluid particles.
A variety of shapes of deformable fluid particles are predicted.@S1063-651X~96!03410-1#

PACS number~s!: 47.55.Dz, 47.65.1a, 77.84.Nh, 82.45.1z

In a nonuniform electric field, an uncharged particle may
be subjected to a dielectrophoretic force. The dielectrophore-
sis of particles is important in a variety of applications in-
cluding biophysics, bioengineering, multiphase separation,
among others@1#. When the particles of concern are fluid
drops or bubbles, the fluid interface between the particle and
surrounding medium can be mobile as well as deformable. If
finite electrical conductivity of the dielectric fluids comes
into play, local charge accumulation at the mobile fluid in-
terface can induce a tangential electric stress that drags fluids
into motion @2#. The leaky dielectric theory put forward by
Taylor @3# has been successful in describing the electrohy-
drodynamic flow driven by the tangential electric stress
around an uncharged fluid drop in a uniform electric field
~see also@4–6#!. Theoretical analyses of the dielectrophore-
sis of uncharged drops and bubbles in nonuniform fields,
however, have not considered the effects of the electrohydro-
dynamic flow and particle shape deformations@1#. To eluci-
date the primary effects of electrohydrodynamic flow in the
dielectrophoresis of deformable fluid particles, such as drops
and bubbles, this work presents a theoretical analysis of the
poorly understood phenomena with a leaky dielectric model.

The key ingredients in the leaky dielectric model, as rec-
ognized by Taylor@3#, are the finite electrical conductivity
and viscosity of the fluids. Accounting for the fluid conduc-
tivity in the theory need not be sophisticated; constant Ohmic
conductivity in each fluid phase can be sufficient to induce
tangential electric stress at the particle interface. The electro-
hydrodynamic flow, due to the tangential electric stress, is a
consequence of the fluid viscosities that transfer momentum
from the interface, where the driving force resides, to bulk
fluids. Many functional forms may be used to describe fluid
viscosities@7#; among all the possibilities, Newtonian fluids
of constant viscosities may be considered as a simple yet
adequate first approximation in the leaky dielectric theory.
Even for Newtonian fluids, nonlinearities may appear in gen-
eral governing equations because of the fluid inertia and the
capillarity of deformable fluid interfaces. The nonlinear be-
havior of significantly deformed leaky dielectric drops in a
uniform electric field was investigated by Feng and Scott@6#
with finite element computations. Nonlinearities may also
arise from the charge convection by fluid flow at the inter-
face, which have not been rigorously investigated in existing
theoretical work~see the discussions in Refs.@4–6#!. To un-

derstand the basic features of the electrohydrodynamic flow
in the dielectrophoresis of deformable fluid particles, the
theoretical model considered here is kept simple by neglect-
ing all nonlinear effects. As demonstrated by Feng and Scott
@6#, the inclusion of nonlinearities in the numerical compu-
tations may provide more accurate results than a linearized
asymptotic analysis. Appropriate procedures for computing
the solutions of the nonlinear equations may also be used to
predict the critical electric field strength when the fluid par-
ticle becomes unstable, when the mathematical singular
points are evaluated in parameter space. Nevertheless, ana-
lytical solutions of the linearized problem can offer impor-
tant physical insights into the primary electrohydrodynamic
effects and provide invaluable guidance to more comprehen-
sive numerical computations~cf. @6#!.

The problem of concern here consists of a fluid particle of
volume (4/3)pa3, density r i , viscosity m i , conductivity
s i , and dielectric constantk i immersed in an unbounded
immiscible fluid of densityro , viscositymo , conductivity
so , and dielectric constantko . The deformable interface
separating the particle from its surrounding fluid has constant
interfacial tensiong. In what follows, the subscriptsi and
o denote the variables associated with the fluids inside and
outside the particle, respectively; the variables without sub-
scriptsi ando are applicable to either fluid. To illustrate the
most significant effects of local charge accumulation at the
particle interface, the present analysis only considers a dc
electric field and associated axisymmetric steady states. In
spherical coordinates (r , u) with the origin fixed at the par-
ticle’s center of mass, the externally applied electric field can
be described in terms of the electric potentialV
(E52“V) which is assumed to have the form

V52E0@rP1~z!1Lr 2P2~z!#, ~1!

wherez[cosu andPl(z) denotes the Legendre polynomials.
The factorL is a measure of the relative magnitude of the
field nonuniformity. The applied field given by~1! could be
the simplest possible nonuniform electric field for dielectro-
phoresis@8#.

For homogeneous fluids with constant physical properties,
the electric potential distributions inside and outside a
spherical particle are found to be
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r 3 DP2~z!G . ~3!

Equations~2! and~3! satisfy the Laplace equation and all the
boundary conditions, such as that given by~1! in the far
field, as well as the continuity of the tangential component of
the electric field and that of the normal component of the
electrical current density (sE) at the fluid interfacer5a.
HereR[s i /so is the conductivity ratio. Consequently, the
steady surface charge density distribution on the fluid inter-
face is given by

qs~u!5e0~koR2k i !E0@h1P1~z!12h2P2~z!# ~4!

as consistent with the jump in the normal component of the
electric displacement vectore0kE at r5a, with
h1[3/(21R), h2[5La/(312R), ande0 denoting the per-
mittivity of free space. Clearly, the overall particle is electri-
cally neutral even though the local charge density is nonzero
around the interface. These nonzero local surface charges
can be acted upon by the tangential component of electric
field at the fluid interface to generate a tangential electric
stress~cf. Ref. @2,3#!, which can be written as

qsEu5e0~koR2k i !E0
2Fh1

2P1

]P1

]u
1h1h2S P1

]P2

]u

12P2

]P1

]u D12h2
2P2

]P2

]u G . ~5!

Because the fluid interface cannot support tangential stresses,
the tangential electric stress must be offset by the viscous
stresses arising from the induced electrohydrodynamic flow.

Without omitting the salient features in dielectrophoresis,
the effects of the fluid inertia and particle shape deformation
are neglected for the moment. Thus the primary electrohy-
drodynamic flow field can be determined by solving a linear
fourth-order equation for the stream function@9#

F ]2

]r 2
1
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]u S 1
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]u D G2c50

that yields
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whereGl(z) are the Gegenbauer functions of the first kind
@9# and b2[h1h2 /15, b3[h1

2/516h2
2/35, b4[24h1h2 /

35,b5[4h2
2/7. The solutions~6! and~7! satisfy the traction

boundary condition for the tangential stresses at a spherical
fluid interface and the natural boundary conditions that re-
quire the boundedness of the flow field at infinity and coor-
dinate origin. With the relationship between the flow velocity
u and the stream function given by

ur5
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and
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]r
,

the corresponding tangential flow velocity along the fluid
interface, driven by the tangential electric stress, can be de-
rived as

uu5
~koR2k i !e0E0

2a

35~mo1m i !
Fh1h2

3
sinu~90 cos2u211!

1h2
2sinu cosuS 35cos2u291

7h1
2

h2
2 D G . ~8!

The first term in~8! represents the asymmetric flow with
respect to the particle’s equatorial plane, which is associated
with a net force. The fact that the asymmetric flow is pro-
portional toh1h2 shows that both theP1 andP2 components
in the applied electric field are necessary for generating a net
force. In contrast, the second term in~8! consists of compo-
nents associated with eitherh1

2 or h2
2, indicating that the

symmetric flow may appear in any configuration of the ap-
plied electric field. Taylor’s results for the electrohydrody-
namic flow about a drop in a uniform field@3# are recovered
at L50 in the more general results presented here.

To quantitatively calculate the contributions of electrohy-
drodynamic flow to the dielectrophoretic force as well as the
fluid interface deformation, the normal stress balance at the
fluid interface must be evaluated. For convenience, the prob-
lem is considered in a reference frame with the coordinate
origin fixed at the particle’s center of mass. Thus the motion
of the particle is equivalently represented by a uniform flow
velocity at infinity @10#. The steady motion of the particle
can be readily accounted for by adding a term for uniform
flow past a spherical fluid particle at zero Reynolds number
@9# in ~6! and~7!. Moreover, the buoyant force due to gravity
is assumed to be aligned with the applied electric field so that
axisymmetry is preserved. Thus the equation for the normal
stress balance at the fluid interface takes the form

n n:@~T1TE!o2~T1TE! i #5
g

a
“•n , ~9!

where n is the outward unit normal vector at the fluid
interface, T52pI1m@“u1(“u)T# and TE5e0k(E E
2~1/2!E•E I ) @2# with superscriptT standing for the trans-
pose andI the identity tensor. The term on the right side of
~9! is the capillary force due to fluid interface curvatures.
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Each term in~9! can be written as an expansion inPl
where l ranges from 0 to 4, with the terms on the left side
approximated by the results for spherical particles and the
capillary force term on the right side retaining the first-order
effects of interface deformations. Only the terms associated
with l51 in ~9! contribute to a net force, which is of primary
concern in dielectrophoresis. By gathering the terms associ-
ated withP1 in ~9!, the equation describing net force balance
~in the direction ofu 5 0 @11#! can be obtained as

4pk ie0E0
2La3

~21R!~312R! F2~2SR223S11!1~SR21!
M12

M11G
5
4

3
pa3g~r i2ro!12pmom iaU

312M

11M
, ~10!

whereS[ko /k i , M[mo /m i , g is the acceleration of grav-
ity, andU denotes the dielectrophoretic velocity. The term
associated withU represents the viscous drag on a creeping
spherical particle with a mobile fluid interface. In~10!, the
left side accounts for the forces of electric orgin with the first
term arising from the normal electric stress (n n:TE) and the
second term from electrohydrodynamic flow (nn:T),
whereas the right side represents the forces of nonelectric
origin, namely, buoyancy and viscous drag. WhenU 5 0,
~10! describes the force balance in the situation of dielectro-
phoretic levitation of fluid particles against gravity@12#.

The intensity of electrohydrodynamic flow increases as
R→0 and vanishes asR→ 1/S because of the disappearance
of surface charge accumulation@see~4!#. Actually electrohy-
drodynamic flow also vanishes asR→`. In this case, the
fluid inside the particle is much more conductive than the
surrounding fluid and the tangential component of electric
field becomes zero, leading to zero tangential electric stress
@see~5!# despite a substantial amount of surface charge ex-
isting at the fluid interface.

For systems withR approaching unity, dielectrophoresis
becomes impossible for the solid spheres@1#. According to
~10!, however, the dielectrophoretic force on a fluid particle
differs from that on a solid sphere by a term proportional to
M (SR21)/(M11). Hence, dielectrophoresis of fluid par-
ticles with mobile interfaces may still occur atR51 pro-
vided thatkoÞk i andmo /m i is not diminishing. Of course,
circumstances also exist for the dielectrophoretic force to
vanish on a fluid particle but remain effective on a solid
particle. For two-phase fluid systems with closely matched
conductivities and surrounding fluids much more viscous
than that inside the particles, significant differences are ex-
pected between the dielectrophoretic motion of fluid and
solid particles. Ifm i@mo , the electrohydrodynamic flow
contribution to the dielectrophoretic force becomes the same
as that due to the jump in the tangential electric stress at the
surface of a solid sphere. Therefore, when the fluid inside the
particle is much more viscous than the outside one, the di-
electrophoretic motion of a spherical fluid particle resembles
that of a solid sphere, despite the fundamental difference in
physical mechanisms and the appearance of the electrohy-
drodynamic flow.

One of the fundamental differences between fluid and
solid particles is the fluid interface deformation. With the
fluid interface described byr5a@11F(u)# and the shape

function written asF(u)5( l52
4 a lPl(z), the interface curva-

ture term“•n in ~9! takes the approximate form~see, e.g.,
@10#! 21( l52

4 ( l 21 l22)a lPl provided thatua l u!1. Thus
~9! yields
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With respect to the particle’s equatorial plane, the symmetric
shape component is represented bya2 anda4, whereas the
asymmetric deformation is represented bya3. Like the
asymmetric component in the tangential velocity at the inter-
face @see~8!#, a3 is proportional toh1h2. In the absence of
the P2 component of the applied field, i.e.,L→ 0, a3 and
a4 vanish anda2 recovers Taylor’s results@3# for drop
shapes in a uniform electric field. In any configuration of the
applied electric field, the prolate-oblate type of two-lobed
shape deformation described bya2P2(z) may always ap-
pear. Moreover, both signs and relative magnitudes ofa l
~with l52, 3, 4! can be changed by varyingR, S, M , and
L; therefore, a fluid particle may exhibit a great variety of
shapes in response to the stress distributions in the dielectro-
phoretic process.

As a result of~9! for l50, the uniform excess pressure
inside a fluid particle of volume (4/3)pa3 can be determined
as

Dp05
2g

a
2

k ie0E0
2a

2 H h1
2

3
~SR222S11!

1
2h2

2

5
~2SR223S11!1
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5~M11!
F S h1

21
6h2

2
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3~2M27!2
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2

14
~84M2165!G J . ~14!

For liquid drops immersed in an immiscible fluid,Dp0 may
not cause any noticeable physical consequences due to the
material incompressibility. For gas bubbles in liquids, how-
ever,Dp0 is intimately related to the bubble volume which
may be of practical concern in many applications.

The analysis of this work provides the predictions of the
primary effects of electrohydrodynamic flow driven by the
tangential electric stress in the dielectrophoresis of a fluid
particle and the nature of electrified fluid interface deforma-
tions. In general, for systems with (R21)(SR21),0, a
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fluid particle is subjected to a stronger dielectrophoretic
force than a solid sphere due to the electrohydrodynamic
flow. If (R21)(SR21).0, the electrohydrodynamic flow
tends to hinder the dielectrophoretic motion of a fluid par-
ticle in comparison with a solid sphere subjected to the same
nonuniform electric field. In response to stresses arising from
the electric field and electrohydrodynamic flow, a fluid par-
ticle can be deformed in a variety of shapes depending on the
values ofR, S,M , andL. A particle of a different shape may
render different polarization features and in turn alter the
electric and flow fields in different ways. For example, the

dielectrophoretic force may increase when the fluid particle
is elongated in the electric field direction because of a greater
induced dipole moment, or vice versa. Hence, judiciously
arranging the fluid properties so that the fluid particles are
elongated or compressed in the direction of the applied elec-
tric field may become an effective means to control the
strength of the dielectrophoretic force to achieve desired di-
electrophoretic performance.

The author wishes to thank Dr. P.K. Watson and Dr. D.A.
Hays for their valuable discussion and comments.

@1# For a review, see, e.g., H. A. Pohl,Dielectrophoresis~Cam-
bridge University Press, Cambridge, UK, 1978!; T. B. Jones,
Electromechanics of Particles~Cambridge University Press,
Cambridge, UK, 1995!, and citations therein.

@2# J. R. Melcher and G. I. Taylor, Ann. Rev. Fluid Mech.1, 111
~1969!; J. R. Melcher,Continuum Electromechanics~MIT
Press, Cambridge, MA, 1981!.

@3# G. I. Taylor, Proc. R. Soc. London A291, 159 ~1966!.
@4# S. Torza, R. G. Cox, and S. G. Mason, Philos. Trans. R. Soc.

London A269, 295 ~1971!.
@5# O. Vizika and D. A. Saville, J. Fluid Mech.239, 1 ~1992!.
@6# J. Q. Feng and T. C. Scott, J. Fluid Mech.311, 289 ~1996!.
@7# R. B. Bird, W. E. Steward, and E. N. Lightfoot,Transport

Phenomena~Wiley, New York, 1960!.
@8# Dielectrophoretic forces are actually proportional to the local

“E2. In the present reference frame, net force effects cannot
be obtained from any single term ofPl alone. Combinations of
severalP2n and P2n11 are usually needed for net forces to

appear. Of many possibilities, the combination ofP1 andP2

seems to be the simplest one.
@9# J. Happel and H. Brenner,Low Reynolds Number Hydrody-

namics~Prentice-Hall, Englewood Cliffs, NJ, 1965!. The Ge-
genbauer functions of the first kind are:G25(1/2)(12z2),
G35(1/2)(12z2)z, G45(1/8)(12z2)(5z221), G55(1/
8)(12z2)(7z223)z, . . . . In contrast, the Legendre functions
take the forms: P051, P15z, P25(1/2)(3z221),
P35(1/2)(5z223)z, P45(1/8)(35z4230z213), . . . .

@10# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,
London, 1959!.

@11# In this work, the applied electric field is considered to be
mainly in the direction ofu50 as consistent with~1!, whereas
the gravity and uniform flow velocityU, with respect to the
reference frame fixed in the drop, are in the direction of
u5p.

@12# T. B. Jones, J. Electrostat.11, 85 ~1981!.

54 4441BRIEF REPORTS


